авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Pages:     | 1 | 2 ||

«ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ЭКОЛОГИИ И ГЕНЕТИКИ МИКРООРГАНИЗМОВ УРАЛЬСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК ...»

-- [ Страница 3 ] --

ВЫВОДЫ На основе генофонда Региональной профилированной коллекции 1.

алканотрофных микроорганизмов впервые показана способность актинобактерий рода Rhodococcus к биотрансформации растительного пентациклического тритерпеноида лупанового ряда бетулина. В качестве основного метаболита идентифицирован бетулон – продукт региоселективного окисления вторичной гидроксильной группы бетулина. Отобран наиболее активный штаммбиотрансформатор ИЭГМ 66, катализирующий R. rhodochrous образование бетулона (72,2%) в присутствии 3,0 об.% н-гексадекана в течение ч.

Обоснована возможность оптимизации процесса биотрансформации 2.

бетулина за счет использования нерастущих клеток, трансформирующих бетулин при слабощелочных (рН 8,0–9,0) условиях среды и оптимуме клеточной биомассы в количестве 10 г/л в течение 24 ч. Экспериментально подтверждено, что окислительная биотрансформация бетулина протекает благодаря адгезии актинобактериальных клеток к тритерпеновому субстрату.

Определены основные кинетические закономерности и предложена 3.

прогнозная математическая модель процесса биотрансформации бетулина нерастущими клетками, позволяющая прогнозировать его длительность и выход целевого продукта в зависимости от исходной концентрации бетулина. Показано, что в условиях повышенных концентраций бетулина (1,0–3,0 г/л) нерастущие клетки катализируют образование бетулона с выходом от 40 до 57% соответственно. Наиболее высокой бетулинтрансформирующей активностью характеризуются представители R. erythropolis и R. rhodochrous.

На основе бетулона, полученного в результате актинобактериальной 4.

трансформации бетулина, путем последующей химической модификации синтезирован 3,4-секобетулин, перспективный в качестве противоопухолевого агента.

СПИСОК ЛИТЕРАТУРЫ Белицкий, Г.А. Метаболизм канцерогенных углеводородов системой 1.

многоцелевых оксидаз клетки / Г.А. Белицкий // Успехи современной биологии.

1969. Т. 68, № 1. С. 19 34.

Донова, М.В. Биоконверсия стероидных соединений 2.

актинобактериями / М.В. Донова. Пущино: ОНТИ ПНЦ РАН, 2010. 196 с.

Ившина, И.Б. Пропанокисляющие родококки / И.Б. Ившина, 3.

Р.А. Пшеничнов, А.А. Оборин. Свердловск: УНЦ АН СССР, 1987. 128 с.

Кинетическая модель процесса иммобилизации бактериальных клеток 4.

на твердом носителе // М.С. Куюкина, И.Б. Ившина, М.А. Осипенко, Ю.И. Няшин, А.Н. Тюленёва, М.К. Серебренникова, А.В. Криворучко // Российский журнал биомеханики. – 2007. – Т. 11, № 2 (52). – С. 79–87.





Коронелли, Т.В. Липиды R- и S-вариантов Rhodococcus erythropolis / 5.

Т.В. Коронелли, Т.И. Комарова, О.В. Поршнева // Микробиология. – 1995. – Т. 64, N. 6. – С. 769777.

Лакин, Г.Ф. Биометрия: учебное пособие для вузов / Г.Ф. Лакин. М.:

6.

Высшая школа, 1990. 352 c.

Линник, Ю.В. Метод наименьших квадратов и основы математико 7.

статистической теории обработки наблюдений / Ю.В. Линник. – М.: Физматгиз, 1962. – 336 с.

Микробиологическая трансформация природных изопреноидов.

8.

Биотрансформация изопимаровой и дегидроабиетиновой кислот с использованием бактерий рода Rhodococcus / В.В. Гришко, А.В. Воробьев, Э.Н. Шмидт, Л.М. Покровский, Г.А. Толстиков, И.Б. Ившина, М.С. Куюкина // Химия в интересах устойчивого развития. 2000. № 5. С. 693698.

Милько, Е.С. Гетерогенность популяции бактерий и процесс 9.

диссоциации: (Корине- и нокардиоподобные бактерии) / Е.С. Милько, Н.С. Егоров. М.: МГУ, 1991. 141 с.

Мулюкин, А.Л. Покоящиеся формы неспорообразующих бактерий:

10.

дис. … док. биол. наук: 03.02.03 / Мулюкин Андрей Львович. М., 2010. 349 с.

Племенков, В.В. Введение в химию природных соединений / 11.

В.В. Племенков. Казань, 2001 376 с.

Разработка метода получения бетулиновой кислоты 12.

региоселективным окислением бетулина растущими культурами микроорганизмов / Д.В. Митрофанов [и др.] // Башкирский химический журнал.

2006. Т. 13, № 1. С. 89–91.

Романенко, В.И. Экология микроорганизмов пресных вод.

13.

Лабораторное руководство / В.И. Романенко, С.И. Кузнецов. М.: Наука, 1974.

194 с.

Руководство к практическим занятиям по микробиологии / Под. Ред.

14.

Н.С. Егорова. 2 изд. М.: Моск. ун-т, 1983. 215 с.

Семенов, А.А. Основы химии природных соединений: в 2 т. / 15.

А.А. Семенов, В.Г. Карцев М.: Научное партнерство, 2009. – 624 с.

Скрябин, Г.К. Использование микроорганизмов в органическом 16.

синтезе / Г.К. Скрябин, Л.А. Головлева М.: Наука, 1976. 336 с.

Справочник биохимика: пер. с англ. / Р. Досон, Д. Эллиот, У. Эллиот, 17.

К. Джонс. М.: Мир, 1991. 544 с.

Эль-Регистан, Г.И. Покой как форма адаптации микроорганизмов / 18.

Г.И. Эль-Регистан // Механизмы выживания бактерий / О.В. Бухарин, А.Л.

Гинцбург, Ю.М. Романова, Г.И. Эль-Регистан. М.: Медицина, 2005. С. 11129.

19. 18-glycyrrhetinic acid-induced apoptosis and relation with intracellular Ca2+ release in human breast carcinoma cells / H. Luo [et al.] // The Chinese-German Journal of Clinical Oncology. 2004. V. 3. P. 137–140.

20. A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto--boswellic acid (KBA) based on a recombinant cytochrome P450 system / S. Bleif [et al.] // Applied Microbiology and Biotechnology.

2012. V. 93, N. 3. P. 11351146.

21. A novel one-step microbial transformation of betulin to betulinic acid catalysed by Cunninghamella blakesleeana / Y. Feng [et al.] // Molecular Pharmacology. – 2013. – V. 136, N. 1. – P. 7379.





22. Akao, T. Effect of pH on metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by collected human intestinal flora / T. Akao // Biological and Pharmaceutical Bulletin. 2001. V. 24, N. 10. P. 108112.

23. Alakurtti, S. Pharmacological properties of the ubiquitous natural product betulin / S. Alakurtti, T. Mkel, S. Koskimies // European Journal of Pharmaceutical Sciences. – 2006. – V. 29, N. 1. – P. 1–13.

24. Anabolic activity of ursolic acid in bone: stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo / S.U. Lee [et al.] // Pharmaceutical Research. 2008b. V. 58, N. 56. P. 290–296.

25. Anti-AIDS agents, 21. Triterpenoid saponins as anti-HIV principles from fruits of Gleditsia japonica and Gymnocladus chinensis, and a structure-activity correlation / T. Konoshma [et al.] // Journal of Natural Products. 1995. V. 58, N. 9.

P. 1372–1377.

26. Antihyperlipidemic effects of red ginseng, Crataegii Fructus and their main constituents ginsenoside Rg3 and ursolic acid in mice / S.W. Min [et al.] // Biomolecules & Therapeutics. 2008. V. 16, N. 4. P. 364–369.

27. Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2 / K.K. Dharmappa [et al.] // Planta Medica. 2009. V. 75, N. 3.

P. 211–215.

28. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE) / K. Horiuchi [et al.] // Biological and Pharmaceutical Bulletin. 2007. V. 30, N. 6. P. 1147–1149.

29. Antimicrobial activity of the methanolic extract and of the chemical constituents isolated from Newbouldia laevis / V. Kuete [et al.] // Pharmazie. 2007.

V. 62, N. 7. P. 552–556.

30. Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin induced clastogenesis in balb/c mice / F. Aparecida Resende [et al.] // Life Sciences.

2006. V. 79, N. 13. P. 1268–1273.

31. Antiproliferative triterpene saponins from Entada africana / G. Cioffi [et al.] // Journal of Natural Products. 2006. V. 69, N. 9. P. 1323–1329.

32. Antitumor promoting activities of lantadenes on mouse skin tumors and mouse hepatic tumors / A. Inada [et al.] // Planta Medica. 1997. V. 63, N. 6.

P. 272–274.

33. Antitumor triterpenes from medicinal plants / S. Ryu [et al.] // Archives of Pharmacal Research. 1994. V. 17, N. 5. P. 375–377.

34. Antitumoractivity of a 3-oxo derivative of oleanolic acid / D. Huang [et al.] // Cancer Letters. 2006. V. 233, N. 2. P. 289–296.

35. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia / R.G. Krishnamurthy [et al.] // Journal of Neuroscience Research. 2009. V. 87, N. 11. Р. 2541–2550.

36. Babu, T.D. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban / T.D. Babu, G.

Kuttan, J. Padikkala // Journal of Ethnopharmacology.1995. V. 48, N. 1.

P. 5357.

37. Betulin and its derivatives. Chemistry and biological activity / G.A.

Tolstikov [et al.] // Chemistry for Sustainable Development. 2005. V. 13. P. 129.

38. Bioactive microbial metabolites from glycyrrhetinic acid / G. Maatooq [et al.] // Phytochemistry. – 2010. – V. 71, N. 2–3. – P. 262270.

39. Bioconversion of glycyrrhizinic acid in liquorice into 18-beta glycyrrhetinic acid by Aspergillus parasiticus speare BGB / J. Wang [et al.] // Applied Biochemistry and Microbiology. 2010. V. 46, N. 4. P. 462466.

40. Biodegradation of lantadene A, the pentacyclic triterpenoid hepatotoxin by Pseudomonas pickettii / O.P. Sharma [et al.] // Letters in Applied Microbiology.

1997. V. 24, N. 4. P. 229232.

41. Biodegradation potential of the genus Rhodococcus / L. Martnkov, [et al.] // Environment International. 2009. V. 35, N. 5. P. 162177.

42. Biosynthesis of ursolic acid derivatives by microbial metabolism of ursolic acid with Nocardia sp. strains – Proposal of new biosynthetic pathways / D. Leipold [et al.] // Process Biochemistry. – 2010. – V. 45, N. 7. – P. 1043–1051.

43. Biotransformation of 1,8-cineole, the main product of Eucalyptus oils / P.

Rodrguez [et al.] // Electronic Journal of Biotechnology. 2006. V. 9, N. 3.

Р. 232236.

44. Biotransformation of beta-amyrin acetate by Rhodobacter sphaeroides / G.E. Yang [et al.] // Journal of Bioscience and Bioengineering. 2008. V. 105, N. 5.

P. 558561.

45. Biotransformation of betulinic and betulonic acids by fungi / D. Bastos, [et al.] // Phytochemistry. – 2007. – V. 68, N. 6. – P. 834839.

46. Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells / W.A. Duetz [et al.] // Applied and Environmental Microbiology. 2001. V. 67, N. 6. Р. 2829–2832.

47. Biotransformation of glycyrrhetinic acid by Cunninghamella blakesleeana / J. Qin [et al.] // Agricultural Biology and Chemistry. – 2010. – V. 8, N. 5. – P.

373381.

48. Biotransformation of glycyrrhizin by Aspergillus niger / H. Huang [et al.] // Biocatalysis and Biotransformation. 2009. V. 27, N. 2. P. 9095.

Biotransformation of lantadene A (22-angeloyloxy-3-oxoolean-12-en-28 49.

oic acid), the pentacyclic triterpenoid, by Alcaligenes faecalis / A. Singh [et al.] // Biodegradation. 1999. V. 10, N. 5. P. 373–381.

50. Biotransformation of lupeol by Penicillium roqueforti / M.E. Severiano [et al.] // Planta Medica. 2008. V. 74, N. 9. Congress abstracts of 7th Joint Meeting of GA, AFERP, ASP, PSE & SIF, Athens, Greece, August 3–8, 2008.

51. Biotransformation of oleanolic acid by Alternaria longipes and Penicillium adametzi / D. Liu [et al.] // Journal of Asian Natural Products Research. – 2011. – V. 13, N. 2. – P. 160167.

52. Biotransformation of oleanolic acid by Penicillium melinii / T. Ai [et al.] // Latin American Journal of Pharmacy. 2012. V. 31, N. 3. P. 437441.

53. Biotransformation of oleanolic and maslinic acids by Rhizomucor miehei / A. Martinez [et al.] // Phytochemistry. 2013. V. 94. P. 229–237.

54. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system / Z. Wang [et al.] // Process Biochemistry. 2006. V. 41, N. 3. P. 557561.

55. Biotransformation of quinovic acid glycosides by microbes: direct conversion of the ursane to the oleanane triterpene skeleton by Nocardia sp. NRRL 5646 / Z.H. Cheng [et al.] // Organic Letters. 2004. V. 6, N. 18. P. 31633165.

56. Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368 / P. Chatterjee [et al.] // Applied and Environmental Microbiology. 2000. V. 66, N. 9. P. 38503855.

57. Biotransformation of triterpenes / K. Muffler [et al.] // Process Biochemistry. 2011. V. 46, N. 7. P. 115.

58. Biotransformation of ursolic acid by an endophytic fungus from medicinal plant Huperzia serrata / S.B. Fu [et al.] // Chemical and Pharmaceutical Bulletin. – 2011a. – V. 59, N. 9. – P. 11801182.

59. Biotransformation of ursolic acid by Syncephalastrum racemosum CGMCC 3.2500 and anti-HCV activity / S.B. Fu [et al.] // Fitoterapia. 2013. V. 86.

P. 123128.

Biotransformation of -myrcene to geraniol by a strain of Rhodococcus 60.

erythropolis isolated by selective enrichment from hop plants / M.L. Thompson [et al.] // Applied Microbiology and Biotechnology. 2010. V. 85, N. 3. P. 721–730.

61. Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens / C. Capel [et al.] // Journal of Industrial Microbiology and Biotechnology. – 2011. – V. 38, N. 9. – P. 14931498.

62. Boswellic acid acetate induces differentiation and apoptosis in leukemia cell lines / Y. Jing [et al.] // Leukemia Research. 1999. V. 23, N. 1. P. 43–50.

63. Bunch, A.W. Biotransformation of nitriles by rhodococci // Antonie van Leeuwenhoek. 1998. V. 74, N. 1–3. P. 8997.

64. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension / L.O. Somova [et al.] // Phytomedicine.

2003. V. 10, N. 2–3. P. 115–121.

65. Chatterjee, P. Glucosidation of betulinic acid by Cunninghamella sp. / P.

Chatterjee, J. Pezzuto, S. Kouzi // Journal of Natural Products. – 1999. – V. 62, N. 5. – P. 761763.

66. Chatterjee, T. Biotransformation of geraniol by Rhodococcus sp. strain GR3 / T. Chatterjee // Biotechnology and Applied Biochemistry. 2004. V. 39, N. 3.

Р. 303–306.

glycyrrhetinic and 67. Chemical modifications of natural triterpenes boswellic acids: evaluation of their biological activity / G.S. Subba Rao [et al.] // Tetrahedron. 2008. V. 64, N. 51. P. 1154111548.

68. Chen, J. Biotransformation of p-methoxyphenylacetonitrile into p methoxyphenylacetic acid by resting cells of Bacillus subtilis / J. Chen, Y-G. Zheng, Y C. Shen // Biotechnology and Applied Biochemistry. – 2008. – V. 50, N. 3. – P. 147– 153.

69. Choudhary, M. Microbial transformation of 18-glycyrrhetinic acid by Cunninghamella elegans and Fusarium lini, and lipoxygenase inhibitory activity of transformed products / M. Choudhary, S. Zafar, S. Nawaz // Natural Product Research:

Formerly Natural Product Letters. – 2009. – V. 23, N. 6. – P. 507513.

70. Cichewicz, R.H. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection / R.H. Cichewicz, S.A. Kouzi // Medicinal Research Reviews. 2004. V. 24, N. 1.

P. 90114.

71. Cotter, J.L. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells / J.L. Cotter, M.S. Chinn, A.M.

Grunden // Bioprocess and Biosystems Engineering. – 2009. V. 32, N. 3.

P. 369380.

72. Coupled oxidation–reduction of butanol–hexanal by resting Rhodococcus erythropolis NCIMB 13064 cells in liquid and gas phases / P. Marchand [et al.] // Enzyme and Microbial Technology. 2008. V. 43, N. 6. P. 423430.

73. de Carvalho, C.C.C.R. Biotransformation of limonene-1,2-epoxide to limonene-1,2-diol by Rhodococcus erythropolis cells an introductory approach to selective hydrolysis and product separation / C.C.C.R. de Carvalho, F. van Keulen, M.M.R. da Fonseca // Food Technology and Biotechnology. 2000. V. 38, N. 3.

Р. 181–185.

74. de Carvalho, C.C.C.R. Biotransformation of terpenes / C.C.C.R. de Carvalho, M.M.R. da Fonseca // Biotechnology Advances. 2006. V. 24, N. 2. P.

134142.

75. de Carvalho, C.C.C.R. Cell adaptation to solvent, substrate and product: a successful strategy to overcome product inhibition in a bioconversion system / de C.C.C.R. Carvalho, A. Poretti, M.M.R. da Fonseca // Applied Microbiology and Biotechnology. 2005. V. 69, N. 3. Р. 268275.

76. de Carvalho, C.C.C.R. Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14 / C.C.C.R.

de Carvalho, M.M.R. da Fonseca // Journal of Molecular Catalysis B: Enzymatic.

2002b. V. 19–20. Р. 377–387.

77. de Carvalho, C.C.C.R. Maintenance of cell viability in the biotransformation of ) -carveol with whole cells of Rhodococcus erythropolis / ( C.C.C.R. de Carvalho, M.M.R. da Fonseca // Journal of Molecular Catalysis B:

Enzymatic. 2002a. V. 1920. Р. 389–398.

Direct microbial-catalyzed asymmetric -hydroxylation of betulonic acid 78.

by Nocardia sp. NRRL 5646 / L-W. Qian [et al.] // Tetrahedron Letters. – 2009. – V.

50, N. 19. – P. 21932195.

) 79. Eaton, R.W. Biotransformations of (+/ -geosmin by terpene-degrading bacteria / R.W. Eaton, P.Sandusky // Biodegradation. 2010. V. 21, N. 1. Р. 7179.

80. Eaton, R.W. Biotransformations of 2-methylisoborneol by camphor degrading bacteria / R.W. Eaton, P. Sandusky // Applied and Environmental Microbiology. 2009. V. 75, N. 3. P. 583588.

81. Echinocystic acid induces apoptosis in HL-60 cells through mitochondria mediated death pathway / X. Tong [et al.] // Cancer Letters. 2004b. V. 212, N. 1.

P. 21–32.

82. Effect of the extracts from Glycyrrhiza uralensis Fisch. on the growth characteristics of human cell lines: antitumor and immune activation activities / W. Chung [et al.] // Cytotechnology. 2001. V. 37, N. 1. P. 55–64.

83. Effect of ionic liquid-containing system on betulinic acid production from betulin biotransformation by cultured Armillaria luteo-virens Sacc cells / M-L. Fu [et al.] // European Food Research and Technology. 2011. V. 233, N. 3. P. 507515.

84. El-Minofi, H.A. Biotransformation of ammonium glycyrrhizinate by immobilized Aspergillus terreus / H.A. El-Minofi // African Journal of Mycology and Biotechnology. – 2005. – V. 13, N. 1. – P. 4958.

85. Enhanced bioproduction of carvone in a two-liquid-phase partitioning bioreactor with a highly hydrophobic biocatalyst / J.L. Morrish [et al.] // Biotechnology and Bioengineering. 2008. V. 101, N. 4. Р. 768775.

86. Extracellular cholesterol oxidase from Rhodococcus sp.: isolation and molecular characterization / H. Lashkarian [et al.] // Iranian Biomedical Journal.

2010. V. 14, N. 12. P. 4957.

87. Feng, X.Z. A new triterpenoidal saponin from Ixeris sonchifolia and its cytotoxic activity / X.Z. Feng, M. Dong, S.X. Xu // Die Pharmazie. 2001.

V. 56, N. 8. P. 663–664.

88. Fungal degradation of lantadene A, the pentacyclic triterpenoid hepatotoxin of lantana plant / A. Singh [et al.] // International Biodeterioration & Biodegradation. 2001. V. 47, N. 4. P. 239–242.

89. Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids / C.D. Coldren [et al.] // Planta Medica. 2003. V. 69, N. 8.

P. 725–732.

90. Gill, P.E. Practical optimization / P.E. Gill, W. Murray, M.H. Wright.

London: Academic Press, 1981. – 509 p.

91. Glycyrrizinic acid / G.A. Tolstikov [et al.] // Russian Journal of Bioorganic Chemicals. 1997. V. 23, N. 9. P. 691–709.

92. Glycyrrizinic acid / G.A. Tolstikov [et al.] // Pharmaceutical Chemistry Journal. 1998. V. 23. P. 5–14.

93. Grogan, G. Microbial conversion of beta-myrcene to geraniol by a strain of Rhodococcus / G.Grogan, M. Thompson // Practical Methods for Biocatalysis and Biotransformation 2. 2012. V. 2. Р. 159162.

94. Guo, J.S. Inhibitory effects of Centella asiatica water extract and asiaticoside on inducible nitric oxide synthase during gastric ulcer healing in rats / J.S.

Guo, C.L. Cheng, M.W. Koo // Planta Medica. 2004. V. 70, N. 12. P. 11501154.

95. Guo, N. Biotransformation of 3-oxo-oleanolic acid by Absidia glauca / N.

Guo, Y. Zhao, W. Fang // Planta Medica. – 2010. – V. 76, N. 16. – P. 19041907.

96. Gurtovenko, A.A. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide / A.A.

Gurtovenko, J. Anwar // The Journal of Physical Chemistry B. 2007. V. 111, N. 35.

P. 1045310460.

97. Hanson, R.L. Enzymatic C-4 deacetylation of 10-deacetylbaccatin III / R.L. Hanson, W.L. Parker, R.N. Patel // Biotechnology and Applied Biochemistry.

2006. V. 45, N. 2. Р. 81–85.

98. Goswami, P. Hydrocarbon pseudosolubilizing and emulsifying proteins produced by Pseudomonas cepacia N1 / P. Goswami, A.K. Hazarika, H.D. Singh // Journal of Fermentation and Bioengineering. 1994. V. 77, N. 1. P. 28–31.

99. Hata, K. Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line / K. Hata, K. Hori, S. Takahashi // Journal of Natural Products. 2002. V. 65, N. 5. P. 645648.

100. Hepatoprotective and hepatotoxic actions of oleanolicacid-type triterpenoidal glucuronides on rat primary hepatocytecultures / J. Kinjo [et al.] // Chemical and Pharmaceutical Bulletin. 1999. V. 47, N. 2. P. 290–292.

101. Hikino H. Microbial transformation of oleanolic acid / H. Hikino, S.

Nabetani, T. Takemoto // Yakugaku Zasshi. – 1971. – V. 91. – P. 637640.

102. Hikino H. Microbial transformation of oleanolic acid / H. Hikino, S.

Nabetani, T. Takemoto // Yakugaku Zasshi. – 1972a. – V. 92. – P. 15281533.

103. Hikino H. Microbial transformation of oleanolic acid / H. Hikino, S.

Nabetani, T. Takemoto // Yakugaku Zasshi. – 1972b. – V. 92. – P. 891895.

104. Hikino, H. Biochemical synthesis. III. Microbial transformation of oleanolic acid // H. Hikino, S. Nabetani, T. Takemoto // Yakugaku Zasshi. – 1969. – V.

89. – P. 809813.

105. Hopmann, K.H. Catalytic mechanism of limonene epoxide hydrolase, a theoretical study / K.H. Hopmann, B.M. Hallberg, F. Himo // Journal of the American Chemical Society. 2005. V. 127, N. 41. Р. 1433914447.

106. Hsu, Y.L. Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells / Y.L. Hsu, P.L. Kuo, C.C. Lin // Life Sciences. 2004. V. 75, N. 19. P. 2303–2316.

107. Hydroxylation of oleanolic acid to queretaroic acid by cytochrome P from Nonomuraea recticatena / Y. Fujii [et al.] // Bioscience, Biotechnology, and Biochemistry. 2006. V. 70, N. 9. P. 22992302.

108. Immobilization of hydrocarbon-oxidizing bacteria in poly(vinyl alcohol) cryogels hydrophobized using a biosurfactant / M.S. Kuyukina, I.B. Ivshina, A.Y.

Gavrin, E.A. Podorozhko, V.I. Lozinsky, C.E. Jeffree, J.C. Philp // Journal of Microbiological Methods. 2006. V. 65, N. 3. P. 596603.

109. Immunomodulatory effects of two sapogenins 1 and 2 isolated from Luffa cylindrica in Balb/C mice / Khajuria A. [et al.] // Bioorganic & Medicinal Chemistry Letters. 2007. V. 17. P. 1608–1612.

110. In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells / F. Mengoni [et al.] // Planta Medica. 2002. V. 68, N. 2. P. 111–114.

111. In vitro antioxidant activity potential of lantadene A, a pentacyclic triterpenoid of Lantana plants / C. Grace-Lynn [et al.] // Molecules. 2012. V. 17, N. 9. P. 1118511198.

112. Inhibition of p-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals / T. Nabekura [et al.] // Cancer Chemotherapy and Pharmacology.

2008. V. 62, N. 5. P. 867–873.

113. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture / Y. Shao [et al.] // Planta Medica. 1998. V. 64, N. 4. P. 328–331.

114. Inhibitory effect of some triterpenes from cacti on 32Pi-incorporation into phospholipids of HeLa cells promoted by 12-O-tetradecanoylphorbol-13-acetate / K. Kinoshita [et al.] // Phytomedicine. 1999. V. 6, N. 2. P. 73–77.

115. Inhibitory effects of lantadenes and related triterpenoids on Epstein-Barr virus activation / A. Inada [et al.] // Planta Medica. 1995. V. 61, N. 6. P. 558–559.

116. Interactions of Mycobacterium fortuitum with solid sterol substrate particles / P. Atrat [et al.] // Journal of Basic Microbiology. 1991. V. 31, N. 6.

P. 413–422.

117. Khan, I.A. Antifungal activity of a new triterpenoid glycoside from Pithecellobium racemosum (M.) / I.A. Khan, A.M. Clark, J.D. McChesney // Pharmaceutical Research. 1997. V. 14, N. 3. P. 358–361.

118. Kuyukina, M.S. Rhodococcus biosurfactants: biosynthesis, properties and potential applications / M.S. Kuyukina, I.B. Ivshina // Biology of Rhodococcus / Ed H.M. Alvarez // Microbiology Monography. V. 16.

Berlin: Springer;

2010.

P. 291313.

119. Larkin, M.J. Biodegradation by members of the genus Rhodococcus:

biochemistry, physiology and genetic adaptation / M.J. Larkin, L.A. Kulakov, C.R.

Allen // Advances in Applied Microbiology. 2006. V. 59. P. 129.

120. Liu, H. Highly regioselective synthesis of betulone from betulin by growing cultures of marine fungus Dothideomycete sp. HQ 316564 / H. Liu, X-L. Lei, N. Li // Journal of Molecular Catalysis B:Enzymatic. – 2013. – V. 88. – P. 3235.

121. Liu, J. Biotransformation optimization of betulin into betulinic acid production catalysed by cultured Armilaria luteo-virens Sacc ZJUQH100-6 cells / J.

Liu, M.L. Fu, Q.H. Chen // Journal of Applied Microbiology. 2010. V. 110, N. 1.

P. 9097.

122. Localization of the steroid 1-dehydrogenase in Rhodococcus erythropolis IMET 7030 by immunoelectron microscopy / B. Wagner [et al.] // Journal of Basic Microbiology. 1992. V. 32, N. 1. P. 6571.

123. Lupane triterpenoids of Salacia cordata / W.F. Tinto [et al.] // Journal of Natural Products. 1992. V. 55, N. 3. P. 395398.

124. Maatooq, G.T. Microbiological and chemical transformations of argentatin B / G.T. Maatooq // Zeitschrift fr Naturforschung C. 2003. V. 58, N. 3 4.

Р. 249255.

125. Mahato, S. Triterpenoids / S. Mahato, A. Nandy, G. Roy // Phytochemistry.

1992. V. 31, N. 7. P. 2199–2249.

Manufacture of C1 -hydroxyoleanolic acid by hydroxylase from 126.

Aspergillus ochraceus NG1203 / J. Wang [et al.] // Shengwu jiagong guocheng. – 2006.

V. 4. – P. 5155.

Martins, L.R. Rearrangement and oxidation of -amyrin promoted by 127.

growing cells of Lecanicillium muscarinium / L.R. Martins, J.A. Takahashi // Natural 2010. V. 24, N. 8.

Product Research: Formerly Natural Product Letters.

P. 767777.

128. Mechanism of antiinflammatory actions of curcumine and boswellic acids.

H.P. Ammon [et al.] // Journal of Ethnopharmacology. 1993. V. 38, N. 2 3.

P. 113–119.

129. Metabolism of 18-glycyrrhetinic acid in Sphingomonas paucimobilis strain G5 / K. Yoshida [et al.] // Biotechnology Letters. – 2001a. – V. 23, N. 19. – P. 253258.

130. Microbial hydroxylation of quinovic acid glycoside by Streptomyces griseus ACCT 13273 / Z-H. Cheng [et al.] // Chinese Journal of Chemistry. 2006.

V. 24, N. 1. P. 9598.

131. Microbial metabolism of biologically active secondary metabolites from Nerium oleander L. / A. Ibrahim [et al.] // Chemical and Pharmaceutical Bulletin. – 2008. – V. 56, N. 9. – P. 12531258.

132. Microbial oxidation and glucosidation of echinocystic acid by Nocardia coralline / X. Feng [et al.] // Journal of Molecular Catalysis B: Enzymatic. 2010.

V. 66. P. 219–223.

133. Microbial production of glycyrrhetic acid 3-O-mono-b-D-glucuronide from glycyrrhizin by Aspergillus terreus / H.A. Amin [et al.] // Malaysian Journal of Microbiology. 2010. V. 6, N. 2. P. 209216.

134. Microbial production of glycyrrhetic acid 3-O-mono--D-glucuronide from glycyrrhizin by Cryptococcus magnus Mg-27 / T. Kuramoto [et al.] // Bioscience, Biotechnology, and Biochemistry. 1994. – V. 58, N. 3. – P. 455458.

135. Microbial transformation of 18-glycyrrhetinic acid by Sphingomonas paucimobilis strain G5 / K. Yoshida [et al.] // Biotechnology Letters. 2001b. V. 23, N. 9. P. 16191624.

136. Microbial transformation of asiatic acid / F-F. Guo [et al.] // Natural Product Reports. – 2013. – V. 15, N. 1. – P. 1521.

137. Microbial transformation of asiatic acid by Alternaria longipes / W-N. He [et al.] // Journal of Asian Natural Products Research. – 2010. – V. 12, N. 9. – P. 760764.

138. Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr 1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC 4740 / D. Collins [et al.] // Phytochemistry. – 2002. – V. 59, N. 5. – P. 479488.

139. Microbial transformation of glycyrrhetinic acid by Curvularia lunata KA 91 / C-J. He [et al.] // Pharmaceutical Biotechnology. 2011. V. 18, N. 3.

140. Microbial transformation of glycyrrhetinic acid by Mucor polymorphosporus / X. Xin [et al.] // Planta Medica. – 2006. – V. 72, N. 2. – P.

156161.

141. Microbial transformation of glycyrrhetinic acid by Mucor spinous / J. Ma [et al.] / Journal of Beijing University of Chemical Technology (Natural Science Edition). – 2008. – V. 1.

142. Microbial transformation of oleanolic acid by Fusarium lini and alpha glucosidase inhibitory activity of its transformed products / M. Choudhary [et al.] // Journal of Asian Natural Products Research. – 2008. – V. 22, N. 6. – P. 489494.

143. Microbial transformation of triterpenoids / A. Parra [et al.] // Mini-Reviews in Organic Chemistry. 2009. V. 6, N. 4. P. 307320.

144. Microbial transformation of ursolic acid by Syncephalastrum racemosum (Cohn) Schroter AS 3.264 / F. Huang [et al.] // Phytochemistry. – 2012a. – V. 82. – P. 5660.

145. Microbial transformations of diterpene acids / A.V. Vorob’ev, V.V.

Grishko, I.B. Ivshina, E.N. Shmidt, L.M. Pokrovskii, M.S. Kuyukina, G.A. Tolstikov // Mendeleev Communications. 2001. V. 11, N. 2. Р. 7273.

146. Microbial transformations of the antimelanoma agent betulinic acid / S.

Kouzi [et al.] // Journal of Natural Products. – 2000. – V. 63, N. 12. – P. 16531657.

147. Microbial transformations of two lupane-type triterpenes and anti-tumor promoting effects of the transformation products / T. Akihisa [et al.] // Journal of Natural Products. – 2002. – V. 65, N. 3. – P. 278282.

148. Microbiological oxidation of triterpenoids. I. 7-Hydroxyglycyrrhetic acid // L. Canonica [et al.] // Gazzetta Chimica Italiana. – 1966. – V. 96. – P. 820831.

149. Microbiological oxidation of triterpenoids. II. 15-Hydroxyglycyrrhetic and 7,15-dihydroxyglycyrrhetic acids / L. Canonica [et al.] // Gazzetta Chimica Italiana. 1967. V. 97. P. 10321051.

150. Microbiological oxidation of triterpenoids. III. Behavior of 18 glycyrrhetic, liquiritic, and 18-liquiritic acids / M. Ferrari [et al.] // Gazzetta Chimica Italiana. – 1969. – V. 99. – P. 848862.

151. Mode of uptake of insoluble solid substrates by microorganisms. I. Sterol uptake by an Arthrobacter species / P.C. Goshwami [et al.] // Biotechnology and Bioengineering. 1983. V. 25, N. 12. P. 2929 – 2943.

152. Mode of uptake of insoluble solid substrates by microorganisms. Uptake of solid n-alkanes by yeast and bacterial species // S.S. Cameotra [et al.] // Biotechnology and Bioengineering. 1983. V. 25, N. 12. P. 29452956.

153. Moghaddam, M.G. Biological activity of betulinic acid: a review / M.G. Moghaddam, F.B.H. Ahmad, A. Samzadeh-Kermani // Pharmacology & Pharmacy. 2012. V. 3. P. 119123.

154. Molecular cloning and identification of a novel oxygenase gene specifically induced during the growth of Rhodococcus sp. strain T104 on limonene / K.Y. Choi [et al.] // The Journal of Microbiology. 2004. V. 42, N. 2. P. 160162.

155. Molecular mechanisms of echinocystic acid-induced apoptosis in HepG cells / X. Tong [et al.] // Biochemical and Biophysical Research Communications.

2004a. V. 321, N. 3. P. 539–546.

156. Multihydroxylation of ursolic acid by Pestalotiopsis microspora isolated from the medicinal plant Huperzia serrata / S.B. Fu [et al.] // Fitoterapia. – 2011b. – V. 82, N. 7. – P. 10571061.

157. New approaches to the structural modification of olean-type pentacylic triterpenes via microbial oxidation and glycosylation / Y-Y. Zhu [et al.] // Tetrahedron.

2011. V. 67, N. 23. P. 42064211.

158. New triterpenoids of Lantana camara. A comparative study of the constituents of several taxa / N.K. Hart [et al.] // Australian Journal of Chemistry.

1976. V. 29. P. 655–671.

159. Novel biotransformation of betulin to produce betulone by Rhodotorula mucilaginosa / D-B. Mao [et al.] // Journal of the Taiwan Institute of Chemical Engineers. 2012. V. 43, N. 6. P. 825829.

160. Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp.

NRRL 5646 / J. Zhang [et al.] // Tetrahedron Letters. – 2005. – V. 46. – P. 23372340.

161. Nucleotide sequence of a portion of the camphor-degrading gene cluster from Rhodococcus sp. NCIMB 9784 / G.A. Roberts [et al.] // DNA Sequence. 2004.

V. 15, N. 2. P. 96103.

162. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species / I.B. Ivshina, M.S. Kuyukina, J.C.

Philp, N. Christofi // World Journal of Microbiology and Biotechnology. 1998.

V. 14, N. 5. P. 711717.

163. One new triterpenoid from biotransformation product of glycyrrhizic acid / L. Kang [et al.] // Journal of Asian Natural Products Research. – 2008. – V. 10, N. 5. – P. 463466.

164. Optimization of biotransformation of ursolic acid by Alternaria longipes / H. Yan [et al.] // Zhongguo Zhongyao Zazhi. 2012. V. 37, N. 15. P. 22802285.

165. P450(camr), a cytochrome P450 catalysing the stereospecific 6-endo hydroxylation of (1R)-(+)-camphor / G. Grogan [et al.] // Applied Microbiology and Biotechnology. 2002. V. 59, N. 45. Р. 449454.

166. Plohmann, B. Immunomodulatory and antitumoral effects of triterpenoid saponins / B. Plohmann, G. Bader, K. Hiller // Pharmazie. 1997. V. 52, N. 12.

P. 953–957.

167. Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T / Y-J. Lang, [et al.] // Extremophiles.

2011. V. 15, N. 5. P. 303310.

168. Purification and characterization of extra-cellular cholesterol oxidase from Rhodococcus sp. PTCC 1633 / M.T. Yazdi [et al.] // Biotechnology. 2008. V. 7, N. 4. P. 751756.

169. Qazi, M.S. Biotransformation of pentacyclic terpene isolated from Alstonia scholaris (R.BR.) / M.S. Qazi, N. Sultana, M. Kamal // Biocatalysis and Biotransformation. 2013. V. 31, N. 4. P. 148152.

170. Ramachandran, S. Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes / S. Ramachandran, N.R. Prasad // Chemico-Biological Interactions. 2008. V. 176, N. 23. P. 99–107.

171. Raphael, T.J. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system / T.J. Raphael, G. Kuttan // Phytomedicine. 2003. V. 10, N. 6–7. P. 483–489.

172. Review article: glycyrrhizin as potential treatment for chronic hepatitis C / T. van Rossum [et al.] // Alimentary Pharmacology & Therapeutics. 1998. V. 12, N. 3. P. 199–205.

173. Ring-A cleavage of 3-oxoolean-12-en-28-oic acid by the fungus Chaetomium longirostre / N. Shirane [et al.] // Phytochemistry. – 1996. – V. 43, N. 1. – P. 99104.

174. Rv1106c from Mycobacterium tuberculosis is a 3beta-hydroxysteroid dehydrogenase / X. Yang [et al.] // Biochemistry. 2007. V. 46, N. 31.

P. 90589067.

Sakano, K. Structures of conversion products formed from 18 175.

glycyrrhetinic acid by Streptomyces sp. G-20 / K. Sakano, M. Ohshima // Agricultural Biology and Chemistry. – 1986a. – V. 50, N. 3. – P. 763766.

Sakano, K. Microbial conversion of -glycyrrhetinic acid and 22 176.

hydroxy-18-glycyrrhetinic acid by Chainia antibiotica / K. Sakano, M. Ohshima // Agricultural Biology and Chemistry. 1986b. V. 50, N. 5. P. 12391245.

177. Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene / M. Saleem // Cancer Letters. 2009. V. 285, N. 2. P. 109–115.

178. Santos, R.C. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity / R.C. Santos, J.A.R. Salvador, S. Marn // Bioorganic and Medical Chemistry. – 2009. – V. 17, N. 17. – P. 6241–6250.

179. Saraswat, B. Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes / B. Saraswat, P.K.S. Visen, D.P.

Agarwal // Phytotherapy Research. 2000. V. 14, N. 3. P. 163–166.

180. Screening of filamentous fungi to identify biocatalysts for lupeol biotransformation / T. Carvalho [et al.] // Molecules. – 2010. – V. 15, N. 9. – P. 61406151.

181. Sharma, O.P. A review of the noxious plant Lantana camara / O.P.

Sharma, H.P.S. Makkar, R.K. Dawra // Toxicon. 1988. V. 26, N. 11. P. 975–987.

182. Sharma, O.P. Natural products of the lantana plant – the present and prospects / O.P. Sharma, P.D. Sharma // Journal of Scientific & Industrial Research.

1989. V. 48. P. 471–478.

183. Stereoselective carveol dehydrogenase from Rhodococcus erythropolis DCL14. A novel nicotinoprotein belonging to the short chain dehydrogenase/reductase superfamily / M.J. van der Werf [et al.] // The Journal of Biological Chemistry.

1999b. V. 274, N. 37. Р. 2629626304.

184. Steroid 9-hydroxylation during testosterone degradation by resting Rhodococcus equi cells // Y.-u. Kim [et al.] / Archiv der Pharmazie Chemistry in Life Sciences. 2007. V. 340. P. 209–214.

185. Structural determination of two new triterpenoids biotransformed from glycyrrhetinic acid by Mucor polymorphosporus / X.L. Xin [et al.] // Magnetic Resonance in Chemistry. 2010. V. 48, N. 2. P. 164167.

186. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site / M. Arand [et al.] // The EMBO Journal. 2003. V. 22, N. 11. P. 25832592.

187. Sultana, N. Oleanolic acid and related derivatives as medicinally important compounds / N. Sultana, A. Ata // Journal of Enzyme Inhibition and Medicinal Chemistry. – 2008. – V. 23, N. 6. P. 739756.

188. Synthesis and cytotoxicity of 28-carboxymethoxy lupane triterpenoids.

Preference of 28-O-acylation over 28-O-alkylation of betulin by ethyl bromoacetate / A.A. Mar [et al.] // Chinese Chemical Letters. 2009. V. 20, N. 10. P. 11411144.

189. Synthesis and cytotoxicity of 2-cyano-28-hydroxy-lup-1-en-3-ones / A.

Koohang [et al.] // Bioorganic & Medicinal Chemistry Letters. 2009. V. 19, N. 8.

P. 21682171.

190. Synthesis, proapoptotic screening, and structure-activity relationships of novel aza-lupane triterpenoids / A.A. Mar [et al.] // Bioorganic & Medicinal Chemistry Letters. 2010. V. 20, N. 18. P. 53895393.

191. The betulinic acid production from betulin through biotransformation by fungi / Q-H. Chen [et al.] // Enzyme and Microbial Technology. 2009. V. 45, N. 3.

P. 175180.

192. The cytotoxic activity of ursolic acid derivatives / C.M. Ma [et al.] // European Journal of Medicinal Chemistry. 2005. V. 40, N. 6. P. 582–589.

193. The long term efficacy of glycyrrhizin in chronic hepatitis C patients / Y.

Arase [et al.] // Cancer. 1997. V. 79, N. 8. P. 1494–1500.

194. Transformation of glycyrrhezic acid by Aspergillus sp. / Y. Yamada [et al.] // Bioscience, Biotechnology, and Biochemistry. – 1994. – V. 58, N. 2. – P. 436437.

195. Trofimov synthesis of betulin derivatives with 2,3-annelated pyrrole / A.V. Orlov [et al.] // Chemistry of Natural Compounds. – 2011. – V. 46, N. 6. – P. 906– 909.

196. Two new oxidation products obtained from the biotransformation of asiatic acid by the fungus Fusarium avenaceum AS 3.4594 / F-X. Huang [et al.] // Journal of Asian Natural Products Research. – 2012b. – V. 14, N. 11. – P. 10391045.

197. Two new triterpenes from the rhizome of Dryopteris crassirhizoma and inhibitory activities of its constituents on human immunodeficiency virus-1 protease / J.S. Lee [et al.] // Chemical and Pharmaceutical Bulletin. 2008a. V. 56, N. 5.

P. 711–714.

198. Ursolic acid enhances the cellular immune system and pancreatic b-cell function in streptozotocin-induced diabetic mice fed a high-fat diet / S.M. Jang, [et al.] // International Immunopharmacology. 2009. V. 9, N. 1. P. 113–119.

199. Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes / S. Fonranay [et al.] // Journal of Ethnopharmacology. 2008. V. 120. P.

272–276.

200. van der Waerden, B.L. Mathematische statistik / B.L. van der Waerden.

Berlin, Heidelberg: Springer-Verlag, 1957. – 435 pp.

201. van der Werf, M.J. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases // M.J. van der 1998. V. 180, Werf, K.M. Overkamp, J.A. de Bont // Journal of Bacteriology.

N. 19. P. 50525057.

202. van der Werf, M.J. Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14 / M.J. van der Werf, A.M. Boot // Microbiology.

2000. V. 146, Pt. 5. Р. 1129–1141.

203. van der Werf, M.J. Purification and characterization of a Baeyer-Villiger mono-oxygenase from Rhodococcus erythropolis DCL14 involved in three different monocyclic monoterpene degradation pathways / M.J. van Der Werf // Biochemical Journal. 2000. V. 347. Р. 693–701.

204. van der Werf, M.J. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene // M.J. van der Werf, H.J. Swarts, J.A. de Bont // Applied and Environmental Microbiology. 1999a. V. 65, N. 5. P. 2092–2102.

205. Warhurst, A.M. Biotransformations catalyzed by the genus Rhodococcus / A.M. Warhurst, C.A. Fewson / Critical Reviews in Biotechnology. 1994. V. 14, N. 1. P. 2973.

206. Williams, D.R. Metabolism of 1,8-сineole by a Rhodococcus species: ring cleavage reactions / D.R. Williams, P.W. Trudgill, D.G. Taylor // Microbiology.

1989. V. 135, N. 7. P. 19571967.

207. Yang, S. Optimization of cholesterol oxidase production by Brevibacterium sp. employing response surface methodology / S.Yang, H. Zhang // African Journal of Biotechnology. 2012. V. 11, N. 32. Р. 83168322.

208. Yogeeswari, P. Betulinic acid and its derivatives: a review on their biological properties / P. Yogeeswari, D. Sriram // Current Medicinal Chemistry.

2005. V. 12, N. 6. P. 657666.



Pages:     | 1 | 2 ||
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.